แชร์

การเรียนรู้แบบไม่มีผู้ดูแล (Unsupervised Learning)

อัพเดทล่าสุด: 8 ต.ค. 2024
512 ผู้เข้าชม

               คือ เทคนิคในปัญญาประดิษฐ์ที่ใช้ในการวิเคราะห์ข้อมูล โดยที่โมเดลจะเรียนรู้จากข้อมูลที่ไม่มีป้ายกำกับ (label) หรือคำตอบที่ชัดเจน เป้าหมายหลักคือการค้นหาความสัมพันธ์หรือโครงสร้างภายในข้อมูล เช่น การจัดกลุ่ม (clustering) และการลดมิติ (dimensionality reduction)

ตัวอย่างของการใช้ Unsupervised Learning ได้แก่

การจัดกลุ่ม (Clustering) : เช่น การจัดกลุ่มลูกค้าในตลาดเพื่อทำการตลาดที่ตรงกลุ่มเป้าหมายมากขึ้น

การลดมิติ (Dimensionality Reduction) : เช่น การใช้ PCA (Principal Component Analysis) เพื่อทำให้ข้อมูลที่มีมิติสูงสามารถแสดงผลในมิติต่ำกว่าได้

ขั้นตอนการทำงาน Unsupervised Learning

ขั้นตอนการทำงานของ Unsupervised Learning สามารถสรุปได้เป็นขั้นตอนหลัก ๆ ดังนี้

การเตรียมข้อมูล

- รวบรวมข้อมูลที่ไม่มีป้ายกำกับ (label) เช่น ข้อมูลจากเซนเซอร์ ข้อมูลจากเว็บ หรือข้อมูลการขาย

- ทำความสะอาดข้อมูล เช่น กำจัดค่าที่ขาดหายไป (missing values) และจัดการกับข้อมูลที่ไม่สอดคล้อง

การสำรวจข้อมูล (Exploratory Data Analysis - EDA)

- วิเคราะห์และทำความเข้าใจลักษณะของข้อมูล เช่น การแจกแจง (distribution), ค่าที่โดดเด่น (outliers), และความสัมพันธ์ระหว่างฟีเจอร์ต่าง ๆ

การเลือกโมเดล

- เลือกเทคนิค Unsupervised Learning ที่เหมาะสม เช่น Clustering (K-Means, Hierarchical Clustering) หรือ Dimensionality Reduction (PCA, t-SNE)

การสร้างโมเดล

- นำข้อมูลไปใช้ในการฝึกโมเดล โดยการปรับพารามิเตอร์ที่เหมาะสม

การประเมินผล

- ใช้เทคนิคต่าง ๆ เพื่อประเมินผลลัพธ์ เช่น การวิเคราะห์ความสอดคล้องของกลุ่มที่ได้ หรือการใช้ดัชนี (indices) เช่น Silhouette Score

การตีความผลลัพธ์

- วิเคราะห์และตีความข้อมูลที่ได้จากโมเดล เช่น การทำความเข้าใจลักษณะของกลุ่มลูกค้า หรือการแสดงผลข้อมูลที่ลดมิติ

การนำไปใช้งาน

- นำผลลัพธ์ที่ได้ไปใช้ในธุรกิจหรือการตัดสินใจ เช่น การตลาดเฉพาะกลุ่มหรือการวางแผนกลยุทธ์

การปรับปรุงและวนรอบ

- ทำการปรับปรุงโมเดลหรือกลยุทธ์ตามผลลัพธ์ที่ได้ และวนกลับไปยังขั้นตอนต่าง ๆ เพื่อให้ได้ผลลัพธ์ที่ดียิ่งขึ้น

ข้อดี -ข้อเสีย Unsupervised Learning

ข้อดี

ไม่ต้องใช้ป้ายกำกับ

- สามารถทำงานกับข้อมูลที่ไม่มีป้ายกำกับ ทำให้ไม่จำเป็นต้องใช้เวลาในการสร้างชุดข้อมูลที่มีการระบุคำตอบ 

ค้นพบโครงสร้างใหม่

- สามารถค้นพบรูปแบบหรือโครงสร้างในข้อมูลที่อาจไม่เป็นที่รู้จัก ทำให้เกิดความเข้าใจที่ลึกซึ้งขึ้นเกี่ยวกับข้อมูล

ใช้ในหลายบริบท

- สามารถนำไปใช้ในหลากหลายสถานการณ์ เช่น การจัดกลุ่มลูกค้า การวิเคราะห์ตลาด หรือการลดมิติของข้อมูล

ปรับปรุงการวิเคราะห์

- สามารถใช้ในการเตรียมข้อมูลสำหรับการเรียนรู้แบบมีผู้ดูแล (Supervised Learning) โดยช่วยในการสร้างฟีเจอร์ใหม่

ข้อเสีย

การตีความผลลัพธ์ยาก

- ผลลัพธ์ที่ได้อาจจะยากต่อการตีความ เพราะไม่มีการระบุป้ายกำกับให้เข้าใจชัดเจน

ความไวต่อการเลือกพารามิเตอร์

- ผลลัพธ์สามารถเปลี่ยนแปลงได้ตามการตั้งค่าพารามิเตอร์ เช่น จำนวนกลุ่มใน Clustering

ไม่มีการประเมินผลที่ชัดเจน

- ไม่มีวิธีการประเมินผลที่ชัดเจนในการตัดสินว่าโมเดลทำงานได้ดีหรือไม่ เช่น ไม่มีค่า Accuracy

อาจสร้างกลุ่มที่ไม่เป็นประโยชน์

- หากข้อมูลมีความซับซ้อนหรือมีเสียงรบกวนมาก โมเดลอาจสร้างกลุ่มที่ไม่สัมพันธ์กันหรือไม่มีประโยชน์


BY: Patch

ที่มา: CHAT GPT
 


บทความที่เกี่ยวข้อง
วิธีคำนวณ Efficiency ของพื้นที่จัดเก็บแบบ Racking พร้อมเทคนิคเพิ่มประสิทธิภาพคลัง!
วิธีคำนวณ Efficiency ของพื้นที่จัดเก็บแบบ Racking พร้อมเทคนิคเพิ่มประสิทธิภาพคลัง!
Notify.png พี่ปี
22 เม.ย. 2025
การวิเคราะห์และแก้ปัญหาด้วย 5W2H
ในโลกของการทำงาน การวิเคราะห์ปัญหาและหาวิธีแก้ไขอย่างเป็นระบบเป็นสิ่งสำคัญที่ช่วยให้องค์กรดำเนินไปได้อย่างมีประสิทธิภาพ หนึ่งในเครื่องมือที่ใช้กันอย่างแพร่หลายและได้ผลดี คือ 5W2H ซึ่งเป็นเครื่องมือที่เรียบง่ายแต่ทรงพลัง เหมาะสำหรับการวิเคราะห์สถานการณ์ ปัญหา หรือแม้กระทั่งการวางแผนโครงการต่างๆ
Blue_and_Pink_Retro_Illustrative_Great_Square_Pillow.png BS Rut กองรถ
21 เม.ย. 2025
Kaizen มีส่วนช่วยในการลดค่าใช้จ่ายอย่างไร
ในยุคที่การแข่งขันทางธุรกิจทวีความรุนแรง การลดค่าใช้จ่ายโดยไม่ลดคุณภาพเป็นหนึ่งในกลยุทธ์ที่องค์กรต้องให้ความสำคัญ หนึ่งในแนวทางที่มีประสิทธิภาพและได้รับการยอมรับอย่างแพร่หลายคือ “Kaizen” ซึ่งเป็นแนวคิดการปรับปรุงอย่างต่อเนื่องที่มีต้นกำเนิดจากประเทศญี่ปุ่น
Blue_and_Pink_Retro_Illustrative_Great_Square_Pillow.png BS Rut กองรถ
21 เม.ย. 2025
icon-messenger
เว็บไซต์นี้มีการใช้งานคุกกี้ เพื่อเพิ่มประสิทธิภาพและประสบการณ์ที่ดีในการใช้งานเว็บไซต์ของท่าน ท่านสามารถอ่านรายละเอียดเพิ่มเติมได้ที่ นโยบายความเป็นส่วนตัว และ นโยบายคุกกี้
เปรียบเทียบสินค้า
0/4
ลบทั้งหมด
เปรียบเทียบ